
L2 Ethereum ZK Rollup for Private and
Compliant Transactions

Calum Moore, Sidhant Gandhi

November 14, 2023 - Draft 0.5.0

1 Abstract
This paper describes Polybase, an Ethereum L2 zero knowledge rollup with
built in privacy and compliance. We describe the protocol’s interaction interface,
network topology and security mechanisms, that provide privacy preserving and
compliant UTXO transactions at scale.

2 Introduction
Blockchain technology has revolutionised the digital realm, enabling an era
of decentralisation, security, and trust without intermediaries. These benefits
have spurred many innovations across diverse sectors, enabling more transparent,
immutable, and efficient transactions. Yet, for all their transformative advantages,
blockchains have encountered a significant hurdle: privacy. This limitation has,
in many ways, restrained the true potential of blockchains, especially in sectors
where confidentiality is paramount, such as traditional finance, real world assets
and payments.

Historically, achieving both transparency and privacy in blockchains appeared
mutually exclusive. However, with the emergence of Zero-Knowledge (ZK) proofs,
a form of cryptography for provable computation in zero knowledge domains,
it has become feasible to ensure transaction privacy without compromising the
integrity that blockchain platforms promise.

A side effect of enabling privacy, however, is that it complicates regulatory
compliance. With public blockchains, the natural transparency enables regulators
to screen all transactions for potential compliance breaches. With privacy,
everything becomes more opaque and it becomes significantly more difficult
to monitor transactions effectively. Yet this too, can be solved through zero
knowledge, with clients generating relevant proofs that their activity has been
compliant, so called “Proof of Innocence”.

In addition, Layer 2 (L2) solutions have taken center stage in the quest to address

1



blockchain scalability, reducing the strain on the main chain and ensuring faster,
more efficient operations. By combining the benefits of L2 with the privacy and
compliance capabilities of ZK proofs, a new paradigm emerges.

In this paper, we present a full end to end solution for providing on chain privacy
and compliance via an Ethereum L2 rollup, powered by zero knowledge.

3 Architecture
Polybase is an L2 Ethereum rollup with the following architecture:

Figure 1: Polybase L2 architecture

3.1 Roles
Each node on the Polybase protocol can perform one or more of the following
distinct roles:

• Sequencer - add pending unproven blocks to the L1, guaranteeing the
order of transactions

• Rollup Prover - prove that an existing sequenced block is valid or invalid
• Client - proves valid UTXO transactions, so transaction data can remain

private

2



• Encrypted Transaction Registry (Optional) - component to store
transactions so that transactions can be made with offline users

• Ethereum - provides security and data availability for the network

The following sequence diagram demonstrates the flow of actors in the network
during a transfer of notes.

Figure 2: Sequence for transacting on Polybase

3.2 Sequencers & Provers
3.2.1 Sequencers

Sequencers are responsible for submitting a batch of L2 transactions to the L1
blockchain. These batches include the hashes and proofs for each transaction,
thereby creating a data availability layer on Ethereum. The sequencer is respon-
sible for verifying each of the transactions is valid before submitting them to the
L1. If a sequencer submits an invalid block, they will be slashed when a prover
submits a proof that the block is indeed invalid.

3.2.2 Provers

Provers prove that the L2 blocks are valid or invalid. If the block is valid, the
proof and root merkle hash of the rollup is updated in Ethereum. The Ethereum
smart contract needs only the proof and the new root hash from the prover to
the verify and ensure the security of the network.

3



3.2.3 Slot Allocation

It would be expensive and inefficient for all sequencers and provers to submit
transactions in parallel, as many of the transactions would be invalidated by a
different recent transaction included just before it. To prevent this, sequencers
and provers will be allocated slots which determine when they are eligible for
submitting a sequencer of proof transaction to Ethereum.

Ordering of slot allocation will based on a random deterministic ordering derived
from a distributed randomness protocol, such as drand [DLJ20]. Nodes are
ranked for each L2 block, the primary node has priority for the first 8 blocks,
then the next in line has priority for the next 8 blocks, and so on. Nodes can
submit a block before the transaction deadline.

3.2.4 Staking & Rewards

To join as a sequencer, a node is required to submit a small stake (e.g. 1ETH),
designed to prevent nuisance behaviour. For example, sequencers could register
but then fail to batch any transactions on their allocated turn, or submit invalid
blocks. There will be no limit to the number of sequencers that can join,
improving the decentralisation of the network. Economic factors should limit the
total number of sequencers to a reasonable level, as each additional sequencer
reduces the overall gain for all other sequencers.

Sequencers are refunded for the cost of the Ethereum transaction to add the
block, and also rewarded for their participation on the network.

3.2.5 Block Frequency

The maximum frequency that sequencers should add transactions to Ethereum
is 1 epoch (~ 6 minutes), adding batches faster than this is redundant, as finality
will not be improved due to reliance of the finality of Ethereum. The actual
block frequency will be determined by the algorithm on the Ethereum smart
contract, and will take into consideration the level of activity on the network,
fees and other concerns.

3.3 Ethereum
Ethereum provides the data availability, consensus, and settlement layer for
Polybase. It also holds the smart contracts required to administrate the network,
for example, adding/removing sequencers and provers, slashing rules, and the
bridge contracts.

3.3.1 L1 Queue

The L1 Queue allows network participants to call other Ethereum smart contracts
as part of any transaction that occurs on Polybase. Essentially, this allows for an
atomic transactions across both Ethereum and Polybase. This is primarily used

4



for the bridge functionality, so that funds can be locked on Ethereum via the
bridge smart contract, whilst being simultaneously minted on Polybase, and vice
versa. The L1 queue can also be used to better prevent censorship resistance,
allowing any client to submit transactions directly and ensure they are included,
albeit at a higher cost and slower transaction time.

L2 transactions pushed into the L1 Queue should be picked up by the next
sequencer and included in the next batch/block. If no sequencer takes these
transactions after a pre-determined period of time, then the transaction can be
force included in its own block. This should be used only as an escape hatch.

3.3.2 Data Availability

The data availability on Ethereum serves two purposes:

1. Availability of transaction data (UTXO proof and public input hashes),
so all network participants can determine for themselves the full merkle
tree (as the merkle tree algorithm is predictable). Without this, a prover
could change the root hash on Ethereum without providing the txn data
to other nodes, making it impossible for other nodes to know what the
current state of the merkle tree is (only that it is valid). Without the
current state of the merkle tree, no other nodes would be able to create a
proof, as the merkle tree is used in proof generation.

2. A commitment to a set of transactions and their order (so final state can
be known before it is proved), aka consensus.

The batched transactions are ordered and stored on Ethereum, providing a
definitive state of the network, even if the rollup root state hash has not yet been
updated to reflect these transactions. Once the transactions have been finalised
on Ethereum, the order of the transactions cannot change, and therefore the
future state is predictable and fixed.

The data availability layer stores a compressed view of transactions as calldata
to minimise cost. One advantage over public L2 rollups is that each transaction
only needs to provide the hashes involved in the transaction, rather than full
transaction inputs, minimising the the amount of data that must be processed
by Ethereum and therefore reducing cost.

3.3.3 Bridge

The bridge smart contract on Ethereum is responsible for bridging assets from
Ethereum to Polybase, and vice versa. Given Polybase does not currently
provide smart contract functionality, a specific transaction type would be added
for bridging assets. When this transaction type is used, the proof circuit would
modify its rules (e.g. to allow new funds to be minted or burned, outside of the
normal txn rules).

5



3.3.3.1 Onboard: From Ethereum to Polybase To use the bridge, a
user would submit a single transaction to Ethereum directly, that both transfers
the required funds to the Ethereum bridge contract, and adds the mint txn to
the L1 Queue so the mint is propagated to Polybase. Before accepting a block
from the sequencer, the Data Availability component of the smart contract would
verify that the required funds were transferred. Alternatively, the mint can be
processed directly by the sequencer and included in its proof.

3.3.3.2 Offboard: From Polybase to Ethereum Withdrawing an asset
from Polybase, involves proving that a UTXO note was burned, and no output on
Polybase was derived. This would allow the Ethereum smart contract to release
funds (previously locked during the Onboard process). This unlocking would
occur once the L2 block has been proven, as this is the point the transactions
from the data availability are proven to be valid.

3.3.4 Ethereum Reorgs

Finality on Ethereum takes 2 epochs and therefore within that time reorgs can
occur. Reorgs could impact the Polybase sequencing and proving of transactions,
but the worst case outcome would be that sequencers and provers would need to
rework and submit their transactions. The state would never become invalid as
a result of an Ethereum reorg.

3.4 Encrypted Transaction Registry
The encrypted transaction registry is an optional protocol component that allows
transactions to be sent to the receiver, while the receiver is offline. These
transactions are stored encrypted with the receiver’s public key, ensuring only
the receiver can decrypt the data. When a client joins the network, they scan
the registry for new transactions that have been sent to them.

4 Rollup Sparse Merkle Tree
The rollup represents the entire state of the network, where each piece of state is
referred to as a note, is represented by a commitment hash [Merkle87]. Hashes
result in data loss, so the original messages can provably never be reconstructed,
improving the privacy of the protocol.

Each of the hash record states are stored in a merkle tree, so a single root hash
can represent the entire state of the network. No underlying data is stored in the
rollup, and therefore any required shared data must be stored in the Encrypted
Transaction Registry. In addition to privacy, an additional advantage of storing
only hashes in the rollup is that the rollup on disk data size can be somewhat
constrained and deterministic. This is a result of all hashes being a consistent
size regardless of the size of the underlying data. This reduction in the disk size

6



requirements for clients, improves the number of clients able to join the network,
thereby improving decentralisation.

The merkle tree must enable the following operations:

• Prove inclusion - prove a hash exists in the tree
• Prove non-inclusion - prove a hash does not exist in the tree
• Insert - insert a new hash into the tree if it does not already exist

To satisfy these properties, Polybase uses a sparse merkle tree [DPP16]. A sparse
merkle tree has a defined position for every possible value that can be inserted
into the tree. In order to support a 256 bit (32 byte) hash, a tree of size 2256

is required. This means that for every operation, 256 tree nodes need to be
traversed and validated. This may results in an unacceptable performance.

There are two possible optimisations to improve the performance:

1. A smaller tree could be used, such as 2128. This would result in a higher
likelihood, but possibly still acceptable, risk of hash collision. For a tree
of size 2128 it would take ~8 million years, generating 10,000 hashes per
second to have a 1% chance of collision.

2. The tree can be sharded at multiple levels, allowing these verifications to
occur in parallel

4.0.1 Merkle Proofs

As every hash has a unique position in a sparse merkle tree, we can derive its
position by decomposing each bit of the hash and traversing the tree based on
whether the bit is 0 or 1. For 0, the tree is traversed to the left child, and for 1
the tree is traversed to the right child.

Figure 3: 4 bit tree, demonstrating bit decomposition and insertion

For an inclusion or non-inclusion proof, we can simply check that each of the
provided siblings combined with the the computed child results in the root hash.

7



For non-inclusion we are proving that the leaf node is a null value, which does
not need to be passed to the proof, as it is a static value.

Figure 4: Inclusion and non-inclusion proof

Insertion proofs are a combination of a non-inclusion proof (existing position
must be null) and inclusion proof (proving the new root based on the inserted
hash).

Figure 5: Inserting into merkle tree

5 UTXO
UTXO (Unspent Transaction Output) is a state model introduced by Bitcoin
[Nak08] and additionally used in Zcash [GMRA13], and other blockchains to
store the balances that can be spent. In this model, each store of value is a note
that belongs to a specific authenticated account. Notes can be of any value,
but can only be used once. If the note contains a value larger than you wish to
transfer, you can create a new note with the output. You can use multiple input
notes, so long as the total value of incoming notes is the same (or less) than the
total value of outgoing notes.

This model has a number of advantages:

• Scalability - because a user can have multiple notes, multiple payments

8



Figure 6: UTXO

can be included in the same block (even in the case where the underlying
data is hidden)

• Privacy - each transaction creates a new output record/hash. This
prevents adversaries from looking for addresses with high activity or at-
tempting to match accounts based on the source IP of the transaction, as
is possible in account based models like Ethereum.

The considered drawbacks for the UTXO model are:

• Increased tree depth - UTXO transactions create one new insert hash
for every incoming and outgoing note in a transaction. In contrast, an
account based model (such as used in Ethereum) uses only a single hash
insert per account, reducing the size of the tree.

Due to the strict privacy constraints desired for Polybase, the UTXO model was
selected.

5.1 Notes
Each note has the following state properties:

• Application Type - used to differentiate between different applications
running on Polybase (each application type would have a different set of
ZK circuit constraints)

• Authentication - used to verify which actor is allowed to “spend” a note
• Value - the balance of the note, balances between incoming and outgoing

notes must match
• Nullifier entropy - additional nullifier entropy to increase security and

privacy

5.2 Authentication
Authentication identifies the user that is allowed to spend a note. The auth com-
mitment is used in the Nullifer constraint to ensure that the user generating the
nullifier (i.e. spending the note), knows the underlying secret key represented by

9



Figure 7: UTXO note structure

the commitment. Polybase supports multiple authentication systems, denoted by
a type enum, to provide flexible ownership over notes. Additional authentication
types may be added over time.

5.2.1 Poseidon

Users can generate a random 32-byte secret key, and use the poseidon commitment
of the secret key as the authentication address for a note. This provides a highly
performant authentication mechanism, but may not be well supported by existing
wallets or tooling.

5.2.2 Ethereum

Polybase natively supports Ethereum addresses. In this case, the auth commit-
ment would be the Ethereum address. To spend with the Ethereum address a
proof must be generated that proves ownership of the underlying private key.
This can be achieved in zero knowledge by passing the Ethereum private key as
a private input and and deriving the address from the private key.

5.3 Minting and Burning
Special transaction types will allow the UTXO model to be modified in order to
allow bridging of assets to and from Polybase:

• Mint - allows a note to be created without a corresponding input, minting
will be further validated on Ethereum in the data availability layer before
it will be accepted as a valid transaction

• Burn - allows a note to be used without a corresponding output, when
this is proved on Ethereum, the funds will be released from the bridge
contract

10



5.4 Nullifier
As per the UTXO model, a note can only be used once. As such, the protocol
must keep track of which notes have been used or spent, and which have not.
Naively, this could be performed by removing used notes from the merkle tree,
however this would reveal to a sender when a note they have sent to another
user has been spent, reducing privacy.

Instead, to enhance privacy, we can use a deterministic nullifier record that for
each spend must be inserted into the tree, and proven not to exist in the tree via
a non-inclusion proof. The presence of the nullifier represents the record being
spent. The nullifier is constructed in such a way that it is impossible for an
external party to determine which nullifier matches a spent record (or a record
to be spent).

The nullifier is calculated as follows:

N = Poseidon(nk, ψ, cm)

Where:

• nk is the Nullifier Key, a unique secret associated with each user (this is a
auth commitment to the auth)

• ψ (psi) sender controlled randomness, additional entropy provided by
Blake2b [Aumasson et al. 2013] hash. Blake2b provides additional entropy
and privacy security.

• cm is the note commitment, which is a Poseidon commitment to the note.

6 Compliance
Public blockchains allow regulators to easily verify on chain activity is compliant
with regulations. As Polybase is privacy preserving, compliance capabilities need
to be defined at the protocol level to ensure the network is not useful to those
seeking to perform illicit activity.

There are a number of different mechanisms for enforcing compliance on the
network:

1. Transaction lineage - tracking of full or partial transaction lineage, so that
illicit funds can be tracked and disabled across the network. Transaction
details are still private.

2. Privacy pools - bundling transactions and actors into pools of good and or
bad actors and treating them as a single entity

3. Compliance ZK proofs - enable us to hide information while proving specific
compliance constraints

These techniques could be used independently or in combination to ensure the
required level of compliance. In addition, these capabilities could be applied

11



at either onramp/offramp or for each individual transaction depending on the
regulatory or user requirements.

6.1 Transaction lineage
Transaction lineage allows the network to trace the source of funds (but not
individual transaction details) across the network. This can generally be split
into two categories:

1. Source lineage - source tracking tracks only the source of each transaction
as it enters and exists the network. This enables onramp and offramp
providers to reject transactions that are from external sources which are
later found to be illicit.

2. Full lineage - all transaction lineage can be tracked. This reduces the
level of privacy, as any new holder of the note obtains a significant portion
of lineage, and could reveal this publicly without consent of the other
parties.

Figure 8: L2 Rollup-Privacy Pools.drawio (31).png

The transaction lineage would be added to each note, so any receiver of a note
would obtain the transaction lineage, but outside parties would not. In order to
avoid exponentially increasing note size, the lineage of transactions would only
be maintained for a specified time period (i.e. number of blocks, where block
time is constant), for example 1 year.

6.2 Privacy Pools
Privacy pools [BJMFA23] is a mechanism that group users into pools that share
the same level of regulatory and compliance risk. Although the focus of the
privacy pools paper is based around the use of privacy pools in so called “mixers”,
it does discuss the implications of extending this to a system where intermediate
transfers are possible.

Extending this to such a system requires users to accept the risk of loss of funds
if a particular pool they are part of is deemed to be non-compliant. It would
therefore be essential that users choose a pool which matches their risk appetite.

There are a number of different types of pools that could used, such as:

• Add with delay, exclude bad actors

12



• KYC pool
• N per month per person
• N per month per trusted community member
• Real-time AI-based scoring

Transactions between pools would be allowed according to the inbound/outbound
rules of both pools.

6.3 Compliance ZK-Proofs
ZK proofs enable us to prove certain attributes of a transaction or chain of
transactions in a privacy preserving environment. These proofs could be used
as a layer on top of privacy pools or transaction lineage to provide additional
privacy while maintaining the same level of compliance.

Figure 9: Compliance ZK proof

In addition, ZK could be used to prove/enforce additional constraints. Offramp
providers could even enforce their own additional ZK constraints. These addi-
tional constraints can be applied by the offramp in a permission-less manner
outside of the protocol, as the proofs would be generated locally on the client
and submitted in addition to the protocol proof to the offramp.

7 ZK Proofs
There are three ZK circuits required for the Polybase ZK rollup:

1. UTXO proof (client) - runs on the client and proves that a user has
permission to spend an input note and generate an output note

13



2. Insert proof (prover) - calculates the new root given a number of UTXO
proofs

3. Aggregation proof (prover) - combines multiple UTXO proofs and the
insert proof into a single proof to be verified on Ethereum

In addition, a compliance proof can optionally be generated at any time to prove
compliance of given notes:

1. Compliance proof (client) - allows the client to prove that the source
of their funds is not from a blacklisted address

The following diagram represents the high level of flow of input constrains to
the zero knowledge circuits.

Figure 10: ZK process flow

7.1 Proof Algorithm
There has been rapid improvements in zk-SNARK/zk-STARK algorithms in
recent years. Groth-16 [Gro16] has been traditionally the benchmark, which is
used in large scale decentralised protocols, such as Filecoin [BPZZ17]. However,
this algorithm relies on a trusted setup procedure which makes updating the
protocol difficult, and prevents the use of user generated functions (i.e. smart
contracts), so it will not be used in Polybase.

Instead, Polybase uses Halo2 circuits with a HyperPlonk [CBZZ22] arithmeti-
sation scheme and KZG [KZG10] as the polynomial commitment scheme. In
addition to the performance characteristics, Halo2 was selected for its high
security guarantees having been audited and used in production for numerous
projects such as Zcash [Hopwood et al. 2022] and Scroll.

The KZG commitment scheme was selected over the IPA [BBBF18] commitment

14



scheme, for the improved performance, especially in relation to aggregation
proofs. Further enhancements to the proving system are anticipated. For
example, improved recursion techniques, such as ProtoStar [BC23], could likely
yield significant performance increases.

The BN256 pairing friendly elliptic curve [BN06] is used over the pasta curves
traditionally used with Halo2, due for the need of verifying the proofs on
Ethereum.

7.2 Performance
Performance is a key consideration for zero knowledge circuits, in particular the
prover cost is significant compared to running computation in a native turing
machine. The following outlines the expected performance characteristics of
each proof.

Circuit Browser Desktop/Mobile Optimised Server
UTXO Proof 3s 1s -
Insert Proof N/A N/A < 1s
Aggregation Proof N/A N/A 10s
Compliance Proof 1s 0.3s -

7.3 Enhanced throughput with multi-level aggregations
To increase the throughput of the network, multiple levels of aggregation can be
applied, which can then recursively combine multiple proofs into a single proof.
Each additional level of proof increases the overall throughput of the network,
at the expense of additional latency.

Aggregators Layers TPS Latency
1 1 10 10s
11 (10 + 1) 2 100 20s
111 (100 + 10 + 1) 3 1,000 30s
1111 (1000 + 100 + 10 + 1) 4 10,000 40s

8 Transmitting notes
In order to spend a note you must have the data that represents the note being
spent, as generating the spend UTXO proof requires the notes data; and only
the hash commitment of the note is stored in the rollup. The sender of the note,
is responsible for communicating the the new notes data to the receiver of the
note. The sender could decide not send or record the output note, but then the
receiver would not acknowledge receipt of note (i.e. from the senders perspective,

15



they have not received any notes) and therefore it would be as if the transfer
did not complete.

There are two mechanisms to allow senders to communicate the note data to
the recipient.

• P2P - increased privacy, but requires both actors to be online
• Encrypted Registry - reduced privacy if encryption key is lost or exploited

8.1 P2P
If both peers are online, the sender can send the transaction hashes and proofs
to the sequencer, and the underlying data directly to the receiver. This method
approach enhances privacy, as the underlying data is never stored in the public
domain.

Figure 11: Transmitting notes with P2P

8.2 Encrypted Registry
If the Sender and Receiver are not online at the same time, the transaction data
can be stored in the Encrypted Registry. The Encrypted Registry is optional, and
not a core part of the Polybase protocol. It is provided purely as a convenience
feature to store shared user transaction data.

To use the Encrypted Registry, the Sender uses the Receiver’s PublicKey to
encrypt the data, so only the Receiver can decrypt it. When the Receiver joins
the network, they can scan the Encrypted Registry attempting to decrypt all
new records since they were last online. If they are able to decrypt a transaction,
then it is a transaction they have been sent.

Users of the Encrypted Registry should be aware that using it reduces the level
of privacy protection. If the data is encrypted in a public registry there are two
main risks:

1. Exposed secret key - secret key used for encryption is compromised at any
point in time

2. Compromised encryption protocol - underlying encryption protocol is
broken by advances in cryptography or compute

16



Figure 12: Transmitting notes with encrypted registry store

As the Encrypted Registry is an optional feature, other providers could offer
alternative encrypted registries to store transactions. In future, we may provide
a sharded decentralised encrypted registry, where the encrypted data is split
into chunks and blindly stored across multiple nodes, reducing the exposure to
the risks described above.

9 Conclusion
In this paper, we presented the requirements and design for a privacy preserving
Ethereum L2 zero knowledge rollup with built in privacy and compliance. We
presented the underlying zero knowledge proof algorithms that enable secure
and privacy preserving off-chain transactions, as well as the mechanism for
transmitting and sending notes. For the first time, the Polybase rollup protocol
provides the necessary infrastructure to private financial transactions that are
privacy preserving yet compliant.

10 References
[Aumasson et al. 2013] Aumasson, J-P., Neves, S., Wilcox-O’Hearn, Z., and
Winnerlein, C. 2013. BLAKE2: simpler, smaller, fast as MD5.

[BBBF18] Bünz, B., Bootle, J., Boneh, D., Fish, B. Fisch and Poelstra, A. 2018.
Bulletproofs: Short Proofs for Confidential Transactions and More, In IEEE
Symposium on Security and Privacy (SP), 319-338. IEEE. https://doi.org/10.
1109/SP.2018.00020

[BC23] Bünz, B., Chen, B. 2023. ProtoStar: Generic Efficient Accumula-
tion/Folding for Special Sound Protocols. Cryptology ePrint Archive, Paper
2023/620. Accessed on: https://eprint.iacr.org/2023/620

17

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2023/620


[BINSSA23] Buterin, V., Illum, J., Nadler M, Schär, Fabian., and Soleimani,
Ameen. 2023. Blockchain Privacy and Regulatory Compliance: Towards a
Practical Equilibrium.

[BN06] Barreto, P. and Naehrig, M., 2006. Pairing-friendly elliptic curves of
prime order. In: Preneel, B., Tavares, S. (eds) Selected Areas in Cryptography.
SAC 2005. Lecture Notes in Computer Science (vol 3897). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11693383_8

[BPZZ17] Benet, J., Pontarelli, N., Zigdon, Y., and Zuckerman, E. 2017. Filecoin:
A Decentralized Storage Network. https://filecoin.io/filecoin.pdf

[CBZZ22] Chen, B., Bünz, B., Boneh, D., and Zhang, Z. 2022. HyperPlonk: Plonk
with Linear-Time Prover and High-Degree Custom Gates. Cryptology ePrint
Archive, Paper 2022/1355. Accessed on: https://eprint.iacr.org/2022/1355

[DLJ20] Deco, N., Jovanovic, P., & Barman, L. 2020. Drand: Verifiable Dis-
tributed Randomness. https://drand.love/whitepaper.pdf.

[DPP16] Dahlberg, R., Pulls, T., and Peeters, R. 2016. Efficient Sparse Merkle
Trees. In: Brumley, B., Röning, J. (eds) Secure IT Systems. NordSec 2016.
Lecture Notes in Computer Science (vol 10014). Springer, Cham. https://doi.
org/10.1007/978-3-319-47560-8_13

[Gro16] Groth, J. 2016. On the Size of Pairing-Based Non-interactive Arguments.
Advances in Cryptology – EUROCRYPT 2016

[GMRA13] Green, M., Miers, I., Rubin, A.D. and Garman, C. 2013. Zerocoin:
Anonymous Distributed E-Cash from Bitcoin.

[Hopwood et al. 2022] Hopwood, D., Bowe, S., Hornby, T., & Wilcox, N.
(2022). Zcash Protocol Specification. https://zips.z.cash/protocol/protocol.pdf

[KZG10] Kate, A., Zaverucha, G., and Goldberg, I. 2010. Constant-Size Com-
mitments to Polynomials and Their Applications. In: Abe, M. (ed) Advances in
Cryptology – ASIACRYPT 2010. Lecture Notes in Computer Science (vol 6477).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17373-8_17

[Merkle87] Merkle, R. 1987. A digital signature based on a conventional encryp-
tion function." Advances in Cryptology — CRYPTO ’87. Springer.

[Nak08] Nakamoto, S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.

18

https://doi.org/10.1007/11693383_8
https://filecoin.io/filecoin.pdf
https://eprint.iacr.org/2022/1355
https://drand.love/whitepaper.pdf
https://doi.org/10.1007/978-3-319-47560-8_13
https://doi.org/10.1007/978-3-319-47560-8_13
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1007/978-3-642-17373-8_17

	Abstract
	Introduction
	Architecture
	Roles
	Sequencers & Provers
	Sequencers
	Provers
	Slot Allocation
	Staking & Rewards
	Block Frequency

	Ethereum
	L1 Queue
	Data Availability
	Bridge
	Ethereum Reorgs

	Encrypted Transaction Registry

	Rollup Sparse Merkle Tree
	Merkle Proofs

	UTXO
	Notes
	Authentication
	Poseidon
	Ethereum

	Minting and Burning
	Nullifier

	Compliance
	Transaction lineage
	Privacy Pools
	Compliance ZK-Proofs

	ZK Proofs
	Proof Algorithm
	Performance
	Enhanced throughput with multi-level aggregations

	Transmitting notes
	P2P
	Encrypted Registry

	Conclusion
	References

